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ABSTRACT

Considering the issue of low control accuracy in joint trajectory tracking control for manipulator systems

with actuator saturation due to external disturbances, modelling inaccuracies, and joint friction, a sliding

mode active disturbance rejection control approach was proposed. An improved extended state observer is

employed to observe and estimate the lumped disturbances affecting the system, providing feedback

compensation. A variable gain reaching law is devised, coupled with a fast non-singular terminal sliding

mode to design the system control law, which mitigates chattering inherent and ensuring precision control.

Additionally, a novel output error compensation-based anti-windup scheme is introduced to compensate for

the detrimental impacts caused by actuator saturation. Simulation results collectively demonstrate that the

proposed tracking control algorithm exhibits better control performance and robustness against

disturbances.

Key words: robotic manipulator；trajectory tracking；active disturbance rejection control；sliding mode

control；actuator saturation



0 Introduction

The mechanical arm is widely used in the production and detection fields

because of its flexibility and high precision[1,2]. In a practical environment,

the robotic arm is subject to model uncertainty, external disturbances, and

a saturation phenomenon due to the physical characteristics of the device

and its structural limitations[3,4]This leads to the deviation of system

control accuracy, the reduction of system stability, and the failure to

complete normal operations, which makes the research of trajectory

tracking control strategy of great theoretical research significance and

practical application value[5,6].

For the saturation problem, scholars often design and introduce the

saturation compensation system to ensure the control performance of the

system[7-9]. The traditional sliding mode control can only guarantee the

gradual convergence of the system state, cannot guarantee the system

state error converges to zero in finite time, and requires the disturbance,

which greatly limits its application in actual industrial production. Fast

non-singular terminal slide mode (fast non-singular terminal sliding

mode, FNTSM)[10]The emergence overcomes the strange problem of

terminal sliding mode and fast terminal sliding mode control input, and

ensures the characteristics of finite time convergence, realizes the high

precision trajectory tracking in finite time, but still has the problem of

vibration, leading to the decline of system performance, and even

aggravate equipment wear. This paper combines the idea of

self-immunity control[11], a sliding-mode self-immunity control

algorithm was designed.



1 Model description

1.1 Dynamic Model of Robotic Arm

According to Lagrange's theorem, considering robotic arms with n joints,

whose kinetic equations can be described as[6]：

      d,   M q q C q q q G q τ τ&& & & (1)

, , nRq q q& && The manipulator joint angular position vector, angular velocity

vector and angular acceleration vector respectively; is the inertia matrix;

represents the centrifugal force and Coriz force matrix; is the gravity term;

is the system control input; is the external

interference.   n nRM q  , n nRC q q&   nRG q nRτ d
nRτ

Usually in the actual control process, the dynamic model of the

mechanical arm is imprecise, so its model parameters are assumed as

follows:
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parameter difference between nominal and actual values.

Considering the safety problems and physical structure limitations of

mechanical arms in practical applications, the saturation nonlinear

characteristics often exist in the system, which can be described as:
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1,2, ,i n K iu maxiu miniu Where:; is the control law on the i th joint; and are the



maximum and minimum values of the control input moment on the i th

joint, respectively.

At this point, the kinetic model of the robotic arm can be expressed as:

       0 0 0 sat   M q q C q,q q G q u D&& & & (4)

     d ,     D τ M q q C q q q G q&& & & Where: it is the total disturbance term of the

system.

 T1 2x x x 1 x q 2 x q& Define a state variable, and then establish the

following state equation according to equation (4):
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2 Design of Sliding Mode Control with Disturbance Observer

For the mechanical arm dynamic system shown in formula (4), the design

process of the proposed slip mode self-immunity control is given based

on the ADRC idea and the stability theory of Lyapunov, and the structure

of the control system is shown in Figure 1.



Fig 1 Control system structure block diagram

2.1 Design of Extended State Observer

As the core part of the self-resistant disturbance control framework,

extended state observer (ESO) can observe the system state, estimate the

system disturbance, and make feedback compensation. This paper

introduces a new nonlinear function combined with self-immunity control

theory to improve the expansion state observer (improved extended state

observer, IESO):
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ε y 1z 2z 3z 01 02 03, ,   1 2, ,    fal   ifal  Where: is the observation error; is the

system output; is the output observation; is the differential observation; is

the parameter affecting the observation effect; is the adjustable parameter;

b is the controller gain. Compared with traditional mode, it is smoother

and more continuous, and combined with sliding mode control is more

conducive to reduce vibration, which can be described as:
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In formula:  2 1
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the total disturbance acting on the system is expanded into a new state

variable, and the representation differential value is defined, then the state

space equation of the system is expressed as:  3  x P x F  t 3x
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2.2 Design of Sliding Mode Controller

FNTSM converges the state to zero in finite time by designing the sliding

mode surface into a nonlinear superplane. To to the vibration problem, a

sliding pattern is designed. The total disturbance of the system is

estimated by IESO and input to the control end for feedback

compensation, residual due to the uncertainty of the disturbance. After

designing appropriate sliding mode control law, the system control error

can close to 0.

d d d, ,q q q& && Defined as the joint angle, angular velocity and angular

acceleration expectation signal respectively, the joint tracking error can

be expressed as:
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Design such as sliding surface:
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   sig signrr     1K 2K In: define;, for the normal number diagonal

matrix;.1 2r 



For equation (10):
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By formula (8) and formula (9), the above equation may be further

expressed as:
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On the basis of equation (10), the law is designed as follows:
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normal number. It can be seen that when the system state is far away from

the sliding mode surface, and approaching the sliding mode surface, the

system state quickly approaches the sliding mode surface, then decreases

to a small value, the exponential item gain approaches to 0, and the rate

of the system state approach will decrease, so as to alleviate the shaking

condition.

According to the designed sliding mode surface and approach law, the

controller output is:

eq n u u u (14)

equ Where is the equivalent control term when the system state reaches the

sliding mode surface, and is a robust control term. nu

0 s s& Order, and represent the unknown state in IESO, get: 3z 3x
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To meet the arrival conditions of sliding mode control, the following

robust control items are designed: 0ss &
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At this point, bringing formula (15) and formula (16) into formula (14)

can obtain the designed sliding mode control law.u

2.3 Anti-saturation Compensation Scheme Design

On the basis of IESO compensation capacity, an adjustable compensation

coefficient is designed, and an anti-saturation scheme based on Output

Error Compensation-base error compensation (OEC) is proposed, so that

the anti-saturation performance can be adjusted according to the need.

The anti-saturation scheme does not need to introduce a new

compensation system and simplifies the system structure while

guaranteeing the compensation capacity.

The IESO based on the output error compensation has the following

form:
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cK In the tunable compensation gain coefficient matrix, the large gain can

promote the faster compensation of errors, but the too large gain may

cause the observer instability.



3 System stability analysis

Lemma 1[12]Suppose there is a smooth and continuous positive definite

Lyapunov function, and, in the neighborhood of the origin, satisfy:,

where:, and are normal numbers and. At this time, for any particular one,

the finite-time stable convergence time is
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3.1 Convergence Analysis of IESO

Suppose that the third-order linear system obtained from the expansion of

the second-order disturbance system is:
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When the external disturbance is zero, the following error equation can be

obtained according to equations (6) and (19):
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The above formula can be rewritten as:
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In formula:
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Select the positive definite Lyapunov function for the system (21)[13]：
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Lemma 2[14] H  HG ε If there is a matrix whose main diagonal element is
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11 1h  22 33h h    Order,, is positive and infinitely close to zero. After

calculation and deduction, when the conditions are met, the matrix

satisfying the lemma 2 can be obtained, so that the matrix is positive

definite and symmetric, and the corresponding equation (22) is

satisfied: 01 02 03 0    H  HG ε
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That is, the system (21) is asymptotically stable for Lyapunov.

3.2 Stability Analysis of FNTSM Controller

Define the following Lyapunov function:
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Bring the formula (14) into the upper formula available:
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 Since it is a very small normal number, it holds, satisfying the

Lyapunov stability condition. 1 0V& The combinations of formula (30) and

formula (32) are available:
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By lemma 1, the system can converge at a finite time.  1 2
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In summary, the positive definite function of the whole control system is

defined as 0 1 V V V 0 1 0  V V V& & & , From Equations (40) and (43), the system

is asymptotically stable according to the Lyapunov stability criterion. The

system tracking error will converge to a small neighborhood along the

sliding surface to zero in finite time. rt

4 Simulation analysis and validation

In order to verify the effectiveness and accuracy of the proposed method

under the external interference and nonlinear influence of dead area, the

design simulation test of the joint track tracking control system with the

help of MATLAB / Simulink software. Taking the 2-DOF robotic arm as

an example, the model parameters of the kinetic equation (1) are as

follows:
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In formula:
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The physical parameters of the 2-DOF manipulator are shown in Table 1,

and the values of the controller parameters are shown in Table 2.

Considering the error in the actual system model dynamics, the system

uncertainty is set to 10% of the system nominal value, i. e
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Table 1 2-Physical parameters of the DOF robotic arm

symbol definition numeric value

1m Link 1 mass 2.1 kg



2m Link 2 mass .6 2kg

1l Link 1 length 0.26 m

2l Link 2 length 0.24 m

g gravitational

constant
9.81 m/s2

Table 2 Controller parameters

symbol numeric value symbol numeric value

r 5 3  0.001

1K  diag 60,60 01 120

2K  diag 30,30 02 1500

 2 03 12000

 0.5 1 0.5

 1 2 0.25

 1.5  0.02

 80 cK  diag 0.6,1.2



To verify the robustness of this method, friction force and external

time-varying disturbance signals are considered in the
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Figure 2 to Figure 4 show the simulation results of the saturation

compensation (OEC-ISFAC) method and the unsaturation compensation

(ISFAC), the saturation compensation scheme (SC-ISFAC) and the

traditional self-disturbance control (IS-ADRC), and the trajectory

tracking effect, tracking error, error performance index and control input

signal curve, respectively.

To quantify the analytical control performance, the integration of the

absolute value of the error (IAE) and two performance indicators of its

times time (ITAE) are introduced:
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f

t

t

t dt

t t dt

 

 




ε

ε
(36)

ftWhere, it is the system run time. See Figure 3 for the specific indicators.

(a)Joint 1



(b)Joint 2

Fig 2 Joint trajectory tracking effect curve s

(a)Joint 1

(b)Joint 2

Fig 3 Joint trajectory tracking error curve s



Fig 4 Performance indices

As can be seen from Figure 2 to and Figure 4, the present method shows

better error performance, with high tracking curve fit of joint 1 and joint 2,

and the tracking error converges at about 0.15s. After 10s of external

interference, the proposed method can return the error curve to steady

state in a shorter time. Although the SC-ISFAC method also shows the

ideal saturation compensation effect and control accuracy, the

convergence rate is worse than the proposed method, and it needs to

introduce the compensation system, which increases the complexity of

the control system.

(a)Joint 1



(b)Joint 2

Fig 5 Joint control input response curve s

Figure 5 shows the joint control input curve with a saturation limit of

500 Nm, combining Figure 2 and Figure 3, without the anti-saturation

compensation scheme, the control input curve showed obvious

fluctuation during the initial operation of the mechanical arm, because the

actuator saturation affects the stability of the system operation and causes

the system to use the original torque without compensating the missing

torque, which leads to the control performance delay and slow tracking

and error convergence rate. Although IS-ADRC shows similar error

performance to ISFAC, its control input has obvious vibration and poor

control stability.

From the simulation results, under the proposed method, due to the

design of OEC saturation scheme, the system control performance,

showing better error performance and higher control accuracy, and the

control input curve after about 0.1s rapid convergence, into the steady

state is stable in about 20 Nm and 10 Nm interval, and the torque curve

under the proposed method is more smooth and stable, can ensure the

smooth operation of the system.

Considering that the deviation of each joint trajectory during the

operation of the mechanical arm will be further amplified to the end



position, the following end trajectory tracking simulation verification is

conducted. Figure 6 shows the terminal trajectory tracking curve in the

workspace corresponding to the joint motion under the proposed method.

Where the initial position is, Figure 6 (a) is the end position curve, and

Figure 6 (b) is the position tracking error curve of each axis at the

end. 0 0 0( , , ) (0.38,0.33, 0.07)x y z  

(a) T erminal position

(b) End axis tracking error

Fig 6 End effector trace curve s

As can be seen from figure 6, under the proposed method, the terminal

position curve showed ideal fit, and the end of the position of the axis can

converge in a short time, and show small steady state error, further

reflects the joint track tracking only showed little deviation, prove that the

proposed algorithm can achieve the ideal track tracking effect.



5 Conclusion

Under the influence of the compound disturbance, Mechanical arm

system with nonlinear characteristics of input saturation and dead zone,

Using the ADRC as the framework, A modified ESO estimation is

designed and compensates for the total system disturbance; Combined

with FNTSM and variable gain sliding mode approach law, An improved

slip-mode self-immunity algorithm was designed, The fast and

high-precision joint track tracking and control of the robotic arm system

in a limited time is realized; Regarding the reduction of control accuracy

and stability of the system caused by actuator saturation, Design of an

anti-saturation scheme based on the output error compensation, Effective

compensation is realized; Based on the Lyapunov-stability theory, The

stability of the control system is verified. The simulation results show that

the proposed method has strong stability and effectively improves the

control accuracy and response speed.
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