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abstract

This paper proposes an accurate positioning method for rocket debris based on genetic algorithm.
The rocket debris will produce supersonic sonic boom in the process of falling, this paper realises
the high precision positioning of the sonic boom position and time of the rocket debris by
arranging multiple vibration wave monitoring devices in the debris theoretical fallout area,
constructing a set of multilateral measurement equations by using the difference in the arrival time
of the sonic boom, and introducing genetic algorithms to optimally solve the hyperbolic equations
to achieve high precision positioning of the sonic boom position and time of the rocket debris.
The results show that the genetic algorithm can effectively avoid the local optimum problem of the
traditional method and significantly improve the positioning accuracy. In addition, this paper also
explores the error analysis model and the optimisation method of monitoring equipment
arrangement, which further improves the reliability and adaptability of the positioning system.

Keywords: Rocket Debris Recovery, Genetic Algorithm, Sonic Boom Positioning, MLM,
Optimisation Algorithm

1| Introduction

In the history of mankind, space exploration has always been a key force in promoting scientific
and technological progress and expanding the boundaries of human existence. From early
satellite launches to deep space exploration missions, the success of each step cannot be
separated from the rocket technology behind [1]. Due to the high cost and complexity of the
rocket launching process, the recycling and reuse of rocket debris has become increasingly
important. Currently, the vast majority of rockets use a multi-stage rocket structure, in which the
following stage or booster is separated and crashed to the ground by inter-stage separation after
completing the set mission [2]. During the fall, due to the rapid passage of the atmosphere, the

debris exceeds the speed of sound generating a super-helical sonic boom. A sonic boom is a



strong vibrational fluctuation caused by acoustic compression when debris moves faster than the

speed of sound advancing.

These rocket parts falling to the ground have potential reuse value, and at the same time pose a
threat to the facilities and safety on the ground. Therefore, the accurate recovery and reuse of
rocket debris becomes especially important [3]. In order to quickly recover the rocket debris can
be arranged in the debris theoretical fallout area of multiple vibration wave monitoring
equipment, in order to receive different rocket debris from the air from the transonic sonic boom,
and then according to the arrival time of the sonic boom, the location of the airborne debris
when the sonic boom occurs, and then finally using ballistic extrapolation to achieve rapid and

accurate positioning of the debris landing point [4].

2| Literature Review

In the past research of scholars, the time-difference localisation method and area localisation
method are the main methods of acoustic emission source localisation. The basic method of
time-difference localisation is to solve the equation by taking the propagation speed of the
acoustic emission signal, the positional coordinates of the sensors and the time difference
between the arrival of the signal at the sensors as known quantities, and the coordinates of the
acoustic emission source as unknown quantities. According to the type of positioning object is
divided into one-dimensional linear positioning, two-dimensional planar positioning and
three-dimensional body positioning. For n (n=1, 2, 3) dimensional time difference localisation, at
least n+1 sensors are requited. The accuracy of time difference positioning depends on the
measurement accuracy of the arrival time difference and propagation speed, in practice, the
acoustic emission signal is subject to the anisotropy of the medium and its scattering and
attenuation in the propagation process and it is more difficult to get the accurate propagation
speed, generally using the average propagation speed instead of the average propagation speed,
with a limited range of applications and positioning accuracy [5]. The basic method of regional
positioning method is: according to the shape of the device under test and the detection range of
the sensor, the area to be tested is divided into a number of small areas, placed in each small area
of the sensor, by comparing the intensity of the signal received by each sensor to determine the
approximate region of the acoustic emission source. Area positioning method positioning

method is fast, simple, rough, suitable for simple structure, uniform material objects [6].

Ziola et al. used the mutual correlation function method to calculate the signal arrival time
difference, and the experiments showed that the method was effective in locating the aluminium
plate [7]. Y. Ding et al. used the wavelet decomposition method to obtain the arrival moment of
the signal, and solved the problem that the arrival moment was difficult to be determined due to
the inhomogeneity of the propagation medium [4]. Kundu used the mathematical extremum

problem to obtain the position of the acoustic emission source, and studied the problem of



locating the source in fibre-reinforced composite plates [8]. Holford et al. used the method of
acoustic emission source location in fibre-reinforced composite plates to locate the damage
position of bridges by means of acoustic phase velocity and intensity for the condition
monitoring of bridge structures [9,10]. Nivesrangsan et al. used two-dimensional planar
localization method to locate the faults of an engine, and arranged the sensors in triangular arrays
to compare the arrival time difference of the received signals and the signal strengths of the
sensors [11]. The arrival time difference and signal-to-noise ratio of the received signals are
compared to identify the fault location, and the algorithm achieves a better recognition effect
[11].

3| Methodology

3.1 Individual Rocket Debris Localisation based on Polygonal
Measurements

The latitude, longitude, elevation and sonic boom arrival time data provided by the monitoring
equipment allow us to determine the positional coordinates and time of the sonic boom when it
occurs for individual rocket debris in the air. Through the mathematical relationship between the
position and time of sonic boom occurrence, a system of equations is constructed to solve for
the unknown parameters, and the minimum number of monitoring devices required is deduced
based on the number of equations. In order to improve the positioning accuracy, this paper
transforms the seven sets of redundant data into an optimisation problem, sets the minimisation
of positioning error as the objective function, and the position and time of the tone burst as the
decision variables, so as to establish an optimisation model. Ultimately, this optimisation model is

solved using genetic algorithm to ensure more accurate positioning results.

In order to determine the airborne sonic boom position and sonic boom moment of a single
wreckage, we can build a system of non-linear equations based on distances according to

polygonal measurements.

Fig. 1 Principle of In-plane Polygonal Measurement Method



Let the location of the sonic boom be (X,Y,2) ,and its sonic boom time be t ,then the following

equations can be listed:
X=x)2+(y—yD)?+(@z—z)*=df

Where (X, Vi Zj) for the location of the monitoring equipment coordinates, d; for the sonic
boom to the detection equipment i distance. Considering that in practice, the monitoting device
monitoring time zero and sonic boom moment does not necessarily match, the distance
calculated will have a certain degree of etror, so we might as well set the first I monitoring device
measured sonic boom vibration wave arrival time for tj , sonic boom vibration wave arrival time

to monitor the actual time of the monitoring device for T, V is the speed of sound, then can be

listed:
di=v(ti—1t
Joining the above equations gives

(X =x)? + (y—y)? + (2= 2z)? = [v(t — D)]?

represents the relationship between the data from the ith monitoring device and the location and
time of the sonic boom. The equation contains 4 unknowns (X,¥,z,t), and at least four
different sets of equations are needed to find a unique solution. Therefore, data from at least 4
monitoring devices are required. When there are more than 4 monitoring devices, the system of

equations is a super-definite system of equations.

We may as well convert latitude, longitude and elevation into a right-angle 3D coordinate system,
ie. Cartesian coordinate system. Let the latitude, longitude and elevation of the ith device be

(@, bj, i) ,which is converted by the following equation:

x; = 97.304 1000 (a — ap)
(Xi,yi, Zi) =3Yi—= 111.263 1000 (b, - bo)

Zi =

Where (8g,bg) is the latitude and longitude of the coordinate origin, and the unit of (Xj, i, Z;)
in the above transformation formula is metre. Let us set point G as the origin of the coordinates,

then we can derive the following table 1:

Table 1 Cartesian Coordinates of each Device and Arrival Time of the Sonic Boom

appliances | x-coordinate/km | y-cootrdinate/km | z-coordinate/m Sonic boom arrival time/s
A 18.884 9.235 824 100.767
B 71.350 37.273 727 112.220
C 64.731 73.879 742 188.020
D 19.857 78.329 850 258.985
E 46.431 55.186 786 118.443
F 40.883 89.010 678 266.871
G 0 0 575 163.024




We randomly used the coordinate positions and sonic boom arrival times in Table 1, as well as
the latitude, longitude, and altitude of each detection device, to create spatial equations, each

corresponding to a detection device.

Finally, we need to find the latitude, longitude, elevation and time of the sound outbreak, a total
of four unknown quantities. When solving the problem, we can first solve the three joint
equations to obtain the three unknown quantities, and then bring in a non-repeating set of data
to calculate the last unknown quantity t. This step-by-step approach can simplify the calculation
process and reduce the amount of computation. In order to further verify the accuracy of the
results and reduce the error, we will solve all seven sets of data, and if the selected equipment is
larger than four, the problem becomes the solution of the super-definite equation, which is
transformed into a least-squares problem first, and then solved, which can further improve the

precision and accuracy. The solution results and their visualisation images are shown in Figure 1.
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Fig. 2 Predicted position of the sonic boom and the position of the detection device in

Cartesian coordinates

From the calculation, the latitude and longitude of the sonic boom is (111.1962°, 26.6370°), and
the elevation is 748.3422 m. Then bring in any one of the non-repeatable monitoring equipment

data to find the time of the sonic boom t = 0.025204s.

Because the number of monitoring devices is greater than 4, the equation is a hyper-definite



system of equations, in order to make full use of the data, we can use the data to build an
optimisation model to find its optimal solution. The objective function is constructed by
minimising the sum of the residuals of the sonic boom arrival time and the actual arrival time

measured by all the monitoring devices as follows:

min /(X —x)2+ (y —y)2 + @z —2z)% — [V(t — D]
i=1

where based on the data in the table and rough extrapolation, we can set the constraint as

x [-10510%], y [-105,10%]
{z [0,10], t [-100200]

Thus, by solving this least squares problem, we can calculate the optimal solution for the location
and moment of the sonic boom of the wreckage with the data from the seven monitoring

devices. To solve the least squares problem, we use a genetic algorithm.

3.2 Genetic Algorithm to Solve the Overdetermined Multi-Point
Localisation Problem

Genetic algorithm is a heuristic algorithm based on biological genetic mechanism, as a heuristic
search algorithm, it is very suitable for solving complex and non-linear optimisation problems

such as super fixed multipoint localisation.

It is first assumed that the search space represents all possible sonic boom locations, and that
each individual represents a potential sonic boom in the genetic algorithm. The position
coordinates of the wreckage sonic boom (X,y,2) and the sonic boomt are encoded as a
four-dimensional vector, which is set as the individual of the genetic algorithm. To facilitate
subsequent calculations, the four components will be normalised to map their range into the

interval [0,1], denoted as .S = (SX, Sy, Sz, St)

Randomly generate an initial population of N individuals SO = {Sgo), Sgo), ,Sr(]o)} , N is the

population size. Construct a fitness function to evaluate the degree of superiority or inferiority

of each individual in the population, which we denote by the localisation error correlation:

1

G(S) = —?:1fi2 (S) N

Here we introduce a smoothing parameter ¢, which provides a non-zero minimum value for the

denominator to ensure numerical stability. Where fj(S) is the positioning etror of the ith station,



ie:

fi(s) = VX —x)2+ (y —yD2 + (z—z)2 = v(t; — 1)

The larger the fitness value, the smaller the deviation between the individual's predicted position
and the true position, i.e., the smaller the individual's localisation error, and the more superior the

individual is.

The selection strategy determines which individuals are able to participate in the subsequent
crossover and mutation operations, and the probability of each individual being scored is

proportional to its fitness value, i.e:

G(si)
i =————,i=12, |N
j!\l=1G (s)

The new populations selected are randomly paired two by two, while a crossover operation is
petformed with a certain crossover probability P; to generate new individuals, yielding the

following relational equation:

{Siz(silxsiZI Sia) {Si’:(si,ll Sk Sjk+1r 154)
5; = (Sj1.Sj2, 1 Sja) S’ = (Sj1,  SjaiSike1  +Sia)

Using a certain probability of variationPp, ,small perturbations were applied to each component

of each individual:

o = s;+r & ifr <pgy
Y sy ot erwise

Where I is the random number in the range, which is used to control the size of the perturbation,
andd is the mutation step, which determines the magnitude of the random numberr after scaling,

and thus controls the strength of the mutation.

When the result reaches the maximum number of evolutionary generations, or stops running
when the change in fitness value is less than a threshold, we can consider the individual with the
highest fitness value in the final population as the global optimal solution. The optimal solution
can be obtained by implementing the above algorithm using MATLAB's Genetic Algorithm
Toolbox.

We can set an initial value as the average of all observation points, set the range of the sonic
boom point, the latitude range is [27°,29°], the altitude range is [1,10], and the time range is

[0,200] seconds. The population size is taken as N=100, variation probability



Pm = 0.1 ,variation step =0.05, crossover probability P = 0.8 jand the maximum number of
evolutionary generations is 600. The above algorithm is implemented by using the ga function of
the Genetic Algorithm Toolbox in the Optimisation Toolbox of MATLAB, and the optimal
individual is obtained as follows: coordinates s=(110.9471°,26.8800°,748.7830m), t=0.108782s .

The longitude of the sonic boom is 110.9471°, the latitude is 26.8800°, the altitude is 748.7830m,
and the moment of the sonic boom is the first 0.108782s, and the results are to be used in 7

stations, and the root mean square error is 0.344s, which is a good positioning accuracy.

3.3 Genetic algorithm solution results

In the case of increasing to seven monitoring devices, the positioning accuracy can be further
improved by constructing a system of super-determined nonlinear equations. The commonly
used methods for solving such least squares problems include weighted least squares,
regularisation and robust estimation. Here we use genetic algorithm instead of traditional
methods, although its convergence speed is relatively slow, as a global optimisation algorithm, it
can find the optimal solution in a wider search space, and it is not easy to fall into the local

optimum, and the results of the computation are visualised as shown in Fig. 3.
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Figure 3: Map of seven devices and predicted sonic boom locations




3.4 Error analysis models

In large-scale 10T, due to the influence of hardware errors, network attacks, insufficient energy,
bad weather and other practical environmental factors, the collected data often contain large
errors, thus affecting the positioning results, especially in the time when the vibration wave is
received by the monitoring device. We can introduce it into the equation established in the
previous problem II to describe the actual situation morte accurately. Let the time when thei th
device receives the arrival of the vibration wave from thej th wreckage beTij , and let the error

between him and the actual arrival timeTjj bedjj that is
Tij = Tij + 6ij L= 1,2...n;j =12..m

Wheren is the number of monitoring equipment,M is the number of debris in the air, and from
the questiond;j obeys the uniform distribution on the interval [-0.5, +0.5], i.e.8;; U(-0.5,+0.5),

then the equation with the error factor can be varied as:

\/(Xj =x)"+ (=) + (5-2)" = v(Ty — )

In order to reduce the impact of time errors 0jj on the accuracy of the positioning results,
separate processing optimisation of both the positioning algorithm and the placement of the

monitoring device can be used.

3.4.1 Iterative reweighted least squares method

The conventional least squares method gives the same weight to all measurements when
processing them, which may introduce large errors in practical applications. The weighted least
squares method assigns different weights to different measurements by introducing an
error-dependent weighting factor. That is, large weights are assigned to points with small absolute
errors, while small weights are assigned to points with large absolute errors. The above model is

modified to update the objective function:

min
XiYiZiti
=

i J(Xi %) + =Y+ (@=2)" —v(Ty—t)

m n
=1

Where P is the weighting factor of the ith monitoring device for the jth debris measurement,

which is set here as the reciprocal of the measurement residual.

1

N ‘\/(Xi —X)*+ (i = Yy)" + (@ —2)" —v(Ty—t)| +c

Where C is a very small positive number to avoid the denominator of the equation being zero.

3.4.2 Optimisation of monitoring equipment layout



The accuracy of a positioning system is affected not only by the robustness of the algorithms
used, but also by the number of monitoring devices and their spatial layout. Theoretically,
increasing the number of monitoring devices enhances the redundancy and coverage of the data,
thereby improving the accuracy of the positioning results. This is because more data points mean
a richer set of information that can be used to more accurately determine the location of a target.
However, in practice, increasing the number of devices also means increased system complexity
and maintenance costs, requiring more infrastructure support, data processing power and storage
space. Therefore, a combination of accuracy requirements and practical resource constraints

must be considered when determining the number of monitoring devices.
(1) Maximal Mutual Information (MMI)

The MMI criterion is a tool used in information theory to quantify the degree of association
between two random variables. In Problem 4, we assume that the location of the monitoring
equipment on the ground is described by the random variableX , while the spatial location of the
airborne debris and the moment of the sonic boom atre described by the random variableY .

Then the mutual information (X, Y) of X, Y can be expressed as
105 Y) =H(Y) —H(YIX)

Where H(Y) represents the entropy of the random variable Y , which represents the uncertainty
of the random variable Y , the larger the entropy, the larger the uncertainty, and H(Y|X)
represents the uncertainty of the random variable Y under the condition of the known random
variable X , it can be known that the larger the mutual information is, the smaller the uncertainty
between the random variable X (the position of the monitoring equipment) and the random
vatiable Y (the spatial position of the airborne debris and the moment of the sonic boom), and
the greater the accuracy of its positioning. Therefore, we can optimise the position of the
detection equipment by maximising the value of mutual information, thus setting the objective

function as

Q.]%.I xY), Xi,Yi,Zp ,1i=12, ,n
Where  indicates the feasible installation area of the monitoring equipment, which can be

placed according to the local terrain, safety distance and other factors
(2) Geometric Dilution of Precision (GDOP) guidelines

For the optimisation of the positional arrangement of the inspection equipment, we introduce a
minimum geometric accuracy factor criterion. The GDOP is often used in spaceflight to measure
the influence of the spatial geometric distribution of satellites on their positioning accuracy. We

substitute the latitude, longitude and elevation of the monitoring equipment for the GDOP, and



the smaller the value of GDOP, the more uniform the geometric distribution of the monitoring
equipment is, the smaller the influence on the positioning accuracy, and the higher the

positioning accuracy. Where GDOP is defined as follows.

GDOP = ytr((HTH)™1)

where H is the design matrix whose elements are:

Yi—Yi

vij+m :d—ij,

3.4.3 Optimisation validation

In order to verify the effectiveness of the above positioning algorithm as well as the monitoring
device placement algorithm, we have eight randomly generated monitoring devices, given their
latitude and longitude coordinates and four measured sonic boom arrival times, and four rocket

debris with known location coordinates and sonic boom times . We quantitatively assess the

accuracy of the algorithm by means of the root mean square logarithmic error (RMSE) metric.

Table 2 Prediction of Hypothetical Wreckage Locations by Two Algorithms

L Average
Positioning Wreckage 1 Wreckage 2 Wreckage 3 Wreckage 4 RMSLE
Algorithm RMSLE (m) RMSLE (m) RMSLE (m) RMSLE (m) ()

m
General LS 425.6 517.3 389.2 450.8 450.1
IRLS 316.4 394.5 285.7 337.9 337.4

Table 3 RANSAC Algorithm to Get the Wreckage Location and Explosion Moment

Layout Average
T Wreckage 1 Wreckage 2 Wreckage 3 Wreckage 4
Optimisation RMSE
o RMSE (m) RMSE (m) RMSL (m) RMSE (m)
Guidelines (m)
Initial
258.9 326.5 237.7 295.7 279.9
Deployment
G DOP
o 203.4 264.4 192.3 231.4 2231
Optimisation
MMI
o 189.8 253.7 178.7 219.8 210.3
Optimisation




It can be seen that after the optimised deployment, the positioning errors of the wreckage are
reduced by 20.33% and 24.89% respectively. The optimisation scheme based on the MMI
criterion is slightly better than the GDOP criterion in terms of error reduction, and through the
reasonable deployment of monitoring equipment, it can effectively reduce the impact of
measurement error on the positioning performance, and further improve the accuracy and

reliability of the positioning system.

4| Conclusion

This paper investigates the accurate positioning method of multiple rocket debris based on
genetic algorithm. Through the introduction of multilateral measurement method and genetic
algorithm optimisation solution, the problem of high-precision positioning of the sonic boom
position and time of the rocket debris is successfully solved. The results show that the genetic
algorithm can effectively deal with the super-definite nonlinear equations, avoiding the problem
of traditional methods falling into the local optimum, and significantly improving the positioning
accuracy. However, the convergence speed of the genetic algorithm is slow, which is difficult to
meet the real-time requirements. At the same time, the positioning accuracy is highly dependent
on the quality and quantity of data from the monitoring devices, and the results are greatly

affected by sensor failures and environmental noise in practical applications.

Future research direction can explore the combination of genetic algorithm and other
optimisation algorithms to improve the convergence speed of the algorithm; meanwhile, we can
further optimise the arrangement of the monitoring equipment to improve the robustness of the
system against noise and missing data. We can also improve the sonic boom propagation model
by combining it with the actual atmospheric environment model, so as to better adapt to the

localisation requirements in complex environments.
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