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Abstract

With the advancement of agricultural modernization, the intelligent management of greenhouses
has become crucial for improving agricultural productivity. Neural Radiance Fields (NeRF), as an
emerging 3D modeling and rendering technology, offers new solutions for environmental
monitoring, crop growth modeling, and pest and disease early warning in greenhouses. This paper
reviews the principles of NeRF, its 3D reconstruction methods, and its application progress in
greenhouses. It also explores the potential of integrating NeRF with digital twin technology and
analyzes the current status of plant growth models in greenhouses. The study shows that NeRF has
broad prospects for application in agriculture but still faces challenges in data acquisition, model
optimization, and computational efficiency. Future research needs to further integrate multi-source
data and optimize neural network models to promote the intelligent management of greenhouses.
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1. Introduction
The growing global population and demand for efficient agriculture are driving changes in
agricultural production. Greenhouses, known for their efficiency and controllability, have
garnered attention[1]. However, traditional management methods fall short in environmental
monitoring, crop growth regulation, and pest and disease control. In recent years, with
advancements in artificial intelligence and the Internet of Things, generative networks have seen
rapid development, offering novel solutions for image generation, data reconstruction, and
robust perception under complex conditions[2]. Among them, NeRF technology has emerged as
a promising 3D modeling and rendering approach[3]. Its application in greenhouses has become
a research focus, particularly in environmental monitoring, crop growth modeling[4], and early
warning of pests and diseases.

2. Overview of Neural Radiance Fields Technology

2.1 Principle of Neural Radiance Fields Technology



NeRF is a 3D scene representation and rendering technique based on neural networks. Its core
idea is to represent a scene as a continuous volumetric function, modeling the input viewpoints
and directions through a neural network to output the radiance and density information[5] of the
scene. Specifically, NeRF represents each point in the scene as a combination of volumetric
density and color values, modeling these points through a neural network to achieve 3D
reconstruction and rendering of the scene.

The neural network in NeRF typically adopts a Multilayer Perceptron (MLP) [6] structure, with
inputs being the 3D coordinates and direction vectors in the scene, and outputs being the
volumetric density and color information of the points. By integrating the density and color
information of these points, images of the scene from arbitrary viewpoints can be generated.
This method can effectively handle complex lighting and occlusion issues, producing high-quality
3D rendering results[3].

2.2 The Evolution of Neural Radiance Fields Technology

NeRF was introduced by Mildenhall et al. in 2020, primarily for 3D reconstruction and rendering
in the fields of computer vision and virtual reality. It represents a shift in 3D modeling from
traditional geometric modeling to continuous representation based on neural networks. Since its
introduction, NeRF has garnered significant attention from both academia and industry.
Subsequent research has focused on three main areas: First, performance optimization, which
addresses the high computational cost and difficulty in real-time rendering of early NeRF
implementations by optimizing neural network structures and rendering algorithms to improve
computational efficiency and rendering speed. Second, data acquisition and representation, which
explores methods such as sparse sampling and multi-resolution representation to adapt to
different scenarios and enhance model generalization. Third, multi-view and dynamic scene
applications, which introduce the temporal dimension and multi-view data to achieve 3D
reconstruction and rendering of dynamic scenes[7].

2.3 The Current Application Status of Neural Radiance Fields
Technology

As an emerging 3D modeling and rendering technology, NeRF has demonstrated broad
application prospects across various fields. In agriculture, NeRF is utilized for 3D modeling and
monitoring[8] of greenhouse environments. By creating high-precision models of temperature,
humidity, and light within greenhouses, it enables farmers to better understand environmental
distribution and optimize[9] crop growth conditions. Moreover, combined with image
recognition technology, NeRF can monitor crop growth status and pest and disease conditions in
real-time, providing support for precision agriculture. In the field of cultural heritage
preservation, NeRF is employed for high-precision 3D reconstruction of historical buildings and
cultural relics. This not only facilitates the digital preservation of cultural heritage but also offers



immersive virtual tourism experiences to the public, enhancing awareness and protection of
cultural heritage.

3. Technical Methods of Neural Radiance Fields Adapted for

Agricultural Applications

3.1 Optimized Sampling Methods for Neural Radiance Fields

To e nhance the efficiency of NeRF in sampling, researchers have primarily focused on
optimizing sampling strategies and improving neural network structures. Traditional NeRF
employs uniform sampling in 3D space, computing the volume density and color information at
each sample point, and then generating images through volume rendering. However, this method
is computationally expensive, especially when dealing with complex scenes. To address this issue,
several optimization methods have been proposed. For instance, hierarchical sampling first
performs coarse sampling and then fine-grained sampling based on the results, effectively
reducing unnecessary computations. Additionally, adaptive sampling[10] dynamically adjusts the
sampling density according to the scene's complexity, avoiding over-sampling in simple areas
while preserving details in complex regions. In terms of neural network structure, Fourier
features have been introduced to enhance the network's ability to capture high-frequency signals,
allowing high-precision 3D scene reconstruction with fewer sample points[11]. These technical
optimizations not only improve NeRF's sampling efficiency but also enhance its adaptability to
complex scenes, laying the foundation for real-time rendering and broader application.

3.2 Optimization of Sampling Method for Neural Radiance Fields
Technology

To optimize the volume rendering techniques[12] in NeRF, researchers have proposed several
algorithmic improvements. Firstly, lightweight network architectures are introduced, reducing the
number of layers and neurons in the neural network while combining residual connections and
batch normalization techniques to lower computational complexity without sacrificing
performance. Lightweight networks streamline the architecture, reduce the number of parameters,
and accelerate model training and inference. Residual connections mitigate the vanishing gradient
problem in deep networks, ensuring effective information transfer, while batch normalization
stabilizes the training process, enhancing model convergence speed and stability.

Secondly, sparse and multi-resolution representations are employed. These methods ignore
regions with near-zero volume density and dynamically adjust the level of detail in data across
different resolutions, reducing unnecessary computations. Sparse representations identify empty
areas in the scene, avoiding redundant calculations and significantly improving rendering
efficiency. Multi-resolution representations dynamically adjust the level of detail based on scene



complexity, ensuring high-precision modeling in complex areas while reducing computational
load in simpler regions.

Additionally, rendering algorithms are optimized. Techniques such as ray bundling, which
processes multiple rays simultaneously, and early termination and piecewise integration methods,
which reduce the number of intersection calculations and simplify the integration process, are
used. Ray bundling reduces redundant calculations and improves rendering efficiency[13]. Early
termination stops computations early when rays pass through transparent regions, avoiding
unnecessary sampling. Piecewise integration breaks down the integration process into smaller
segments, further simplifying the calculations.

These improvements not only enhance the efficiency of volume rendering but also strengthen
the model's ability to handle complex scenes, providing strong support for the widespread
application of NeRF technology.

4. Conclusion

This paper reviews the application of NeRF in agriculture. NeRF offers high-precision 3D
modeling and real-time rendering for enhanced agricultural management. However, challenges
remain in data processing, model training, real-time performance, and multimodal data fusion.
Future research should focus on optimizing algorithms and improving data handling to increase
NeRF's applicability in agriculture.
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